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Roadmap
¢ Graph problems and representations

¢ PageRank

¢ Emerging Parallel Processing Platforms for Graph-based 
Big Learning
l Problems of MapReduce for Graph-based Processing/ MLDM
l Pregel
l GraphLab
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What’s a graph?
¢ G = (V,E), where

l V represents the set of vertices (nodes)
l E represents the set of edges (links)
l Both vertices and edges may contain additional information

¢ Different types of graphs:
l Directed vs. undirected edges
l Presence or absence of cycles

¢ Graphs are everywhere:
l Hyperlink structure of the Web
l Physical structure of computers on the Internet
l Interstate highway system
l Social networks
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Some Graph Problems
¢ Finding shortest paths

l Routing Internet traffic and UPS trucks

¢ Finding minimum spanning trees
l Telco laying down fiber

¢ Finding Max Flow
l Airline scheduling

¢ Identify “special” nodes and communities
l Breaking up terrorist cells, spread of avian flu

¢ Bipartite matching
l Monster.com, Match.com

¢ And of course... PageRank
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Ubiquitous Network (Graph) Data

http://belanger.wordpress.com/2007/06/28/
the-ebb-and-flow-of-social-networking/

• Social Network
• Biological Network 
• Road Network/Map
• WWW
• Sematic Web/Ontologies
• XML/RDF
• ….

Semantic Search, Guha et. al.,  WWW’03
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Graph (and Relational) Analytics
¢ General Graph 

l Count the number of nodes whose degree is equal to 5
l Find the diameter of the graphs

¢ Web Graph
l Rank each webpage in the webgraph or each user in the twitter graph 

using PageRank, or other centrality measure
¢ Transportation Network

l Return the shortest or cheapest flight/road from one city to another
¢ Social Network

l Determine whether there is a path less than 4 steps which connects 
two users in a social network

¢ Financial Network
l Find the path connecting two suspicious transactions;

¢ Temporal Network
l Compute the number of computers who were affected by a particular 

computer virus in three days, thirty days since its discovery
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Challenge in Dealing with Graph Data

¢ Flat Files
l No Query Support

¢ RDBMS
l Can Store the Graph
l Limited Support for Graph Query

• Connect-By (Oracle)
• Common Table Expressions (CTEs) (Microsoft)
• Temporal Table 
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Native Graph Databases

¢ Emerging Field -
http://en.wikipedia.org/wiki/Graph_database

¢ Storage  and Basic Operators
l Neo4j (an open source graph database) 
l InfiniteGraph
l VertexDB
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Representing Graphs
¢ G = (V, E)

¢ Two common representations
l Adjacency matrix
l Adjacency list
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Adjacency Matrices
Represent a graph as an n x n square matrix M

l n = |V|
l Mij = 1 means a link from node i to j

1 2 3 4
1 0 1 0 1
2 1 0 1 1
3 1 0 0 0
4 1 0 1 0

1

2

3

4
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Adjacency Matrices: Critique
¢ Advantages:

l Amenable to mathematical manipulation
l Iteration over rows and columns corresponds to computations on 

outlinks and inlinks

¢ Disadvantages:
l Lots of zeros for sparse matrices
l Lots of wasted space
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Adjacency Lists
Take adjacency matrices… and throw away all the zeros

1: 2, 4
2: 1, 3, 4
3: 1
4: 1, 3

1 2 3 4
1 0 1 0 1
2 1 0 1 1
3 1 0 0 0
4 1 0 1 0
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Adjacency Lists: Critique
¢ Advantages:

l Much more compact representation
l Easy to compute over outlinks

¢ Disadvantages:
l Much more difficult to compute over inlinks



An Example of 
Big Graph Processing 

Application

Label Propagation in 
Online Social Networks (Graphs)
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Label Propagation Algorithm
Social Arithmetic:

Recurrence Algorithm:

iterate until convergence

Parallelism:
Compute all Likes[i] in parallel

Sue Ann

Carlos

Jo
e

50% What I list on my profile
40% Sue Ann Likes
10% Carlos Like

40%

10%

50%

80% Cameras
20% Biking

30% Cameras
70% Biking

50% Cameras
50% Biking

I Like:

+
60% Cameras, 40% Biking

The picture can't be displayed.



Properties of Graph Parallel Algorithms

Dependency
Graph

Iterative
Computation

What I Like

What My 
Friends Like

Factored 
Computation 



Graphs Algorithms and Graph-based Parallel Processing

Graph algorithms typically involve:
Performing computations at each node: based on node features, edge 
features, and local link structure
Propagating computations: “traversing” the graph

Design Challenges
Very little computation work required per vertex.
Changing degree of parallelism over the course of execution.

Generic recipe:
Represent graphs in some form of data structure, e.g. adjacency lists
Perform local computations in each vertex (node)
Pass along partial results via outlinks to destination vertices
Perform aggregation in each destination vertex (node) after receiving 
information from inlinks of a node
Iterate until convergence



Efficient Graph Algorithms
Sparse vs. dense graphs
Graph topologies
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Tensor 
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Map-Reduce for Data-Parallel ML
Excellent for large data-parallel tasks!
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Is there more to
Machine Learning

?
Embarrassingly Parallel 

Tasks
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Belief
Propagation
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Kernel
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Tensor 
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Lasso

Map-Reduce for Data-Parallel ML
Excellent for large data-parallel tasks!
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Embarrassingly Parallel 
Tasks



Why not use Map-Reduce
for 

Graph Parallel Algorithms?



Data Dependencies
Map-Reduce does not efficiently express 
dependent data

User must code substantial data transformations 
Costly data replication
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Map-Reduce not efficiently express iterative algorithms:
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MapAbuse: Iterative MapReduce
Only a subset of data needs computation:
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MapAbuse: Iterative MapReduce
System is not optimized for iteration:

Data
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Startup Penalty



Belief
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Map-Reduce for Data-Parallel ML
Excellent for large data-parallel tasks!
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Map Reduce?Pregel (Giraph)?
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Pregel (Giraph)
¢ Google’s Pregel  for Distributed Graph Processing (mostly in-memory-

only) 
l Vertex-centric computation with barrier between successive iterations 

(aka Super-steps)
l Inspired by Valiant’s Bulk Synchronous Parallel model[4]
l Open-source version under the Apache Giraph project
l API with flexibility to express arbitrary algorithm
l Scalable and Fault-tolerant platform

Input

Output

Supersteps
(a sequence 
of iterations)



Barrier
Pregel (Giraph)

Bulk Synchronous Parallel Model:

Compute Communicate



PageRank in Giraph (Pregel)

bsp_page_rank() {
sum = 0
forall (message in in_messages()) 

sum = sum + message
rank = ALPHA + (1-ALPHA) * sum;
set_vertex_value(rank);

if (current_super_step() < MAX_STEPS) {
nedges = num_out_edges()
forall (neighbors in out_neighbors())

send_message(rank / nedges);
} else vote_to_halt();

}

Sum PageRank 
over incoming 
messages

Send new messages 
to neighbors or 
terminate
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Computation Model for Pregel

¢ Within each Super-Step, concurrent computation and 
communication need not be ordered in time

¢ Communication through message passing
¢ Each vertex 

l Receives messages sent in the previous Super-step

l Executes the same user-defined function

l Modifies its value or that of its outgoing edges

l Sends messages to other vertices (to be received in the next 
superstep)

l Mutates the topology of the graph

l Votes to halt if it has no further work to do

49Pregel



Bulk synchronous computation 
can be highly inefficient.

50

Example:
Loopy Belief Propagation

Problem



Data-Parallel Algorithms can be Inefficient

The limitations of the Map-Reduce abstraction can lead to 
inefficient parallel algorithms.

Optimized in Memory Bulk Synchronous

Asynchronous Splash BP



Belief
PropagationSVM

Kernel
Methods

Deep Belief
Networks

Neural
Networks

Tensor 
Factorization

PageRank

Lasso

The Need for a New Abstraction
Map-Reduce is not well suited for Graph-Parallelism

52
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Pregel (Giraph)



What is GraphLab?
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Graph-based Big Learning/ 
Parallel Processing Platforms (cont’d)

¢ GraphLab – another vertex-centric model (http://GraphLab.org/projects, 
http://GraphLab.com ) ; Company renamed to Dato, and then to Turi, which 
was acquired by Apple in Aug. 2016.
l Originated from CMU and now by UWashington@Seattle ; 
l Different versions supporting wide-range of platforms:

• GraphLab 1.0 was designed to run on closely-coupled, shared-memory multicore 
machine.

• GraphChi enables a Single PC to process graphs with billions of edges
• GraphLab (Ver2.x) or so-called the PowerGraph model targets for seriously-

imbalanced node degrees found in practical (Natural) graphs and support 
parallel processing on Share-Nothing Cluster architecture

• Taking the split-vertex instead split-edge approach
• GraphCreate (Beta) allows you to code in your PC using Python but deploy to 

run over Cloud-based shared-nothing clusters. 



The GraphLab Framework

Scheduler Consistency Model

Graph Based
Data Representation

Update Functions
User Computation

55



Data Graph

56

A graph with arbitrary data (C++ Objects) associated 
with each vertex and edge.

Vertex Data:
•User profile text
• Current interests estimates

Edge Data:
• Similarity weights 

Graph:
• Social Network



Implementing the Data Graph
Multicore Setting

In Memory
Relatively Straight Forward

vertex_data(vid) à data
edge_data(vid,vid) à data
neighbors(vid) à vid_list

Challenge:
Fast lookup, low overhead

Solution:
Dense data-structures
Fixed Vdata&Edata types
Immutable graph structure

Cluster Setting

In Memory
Partition Graph:

ParMETIS or Random Cuts

Cached Ghosting

Node 1 Node 2

A B

C D

A B

C D

A B

C D



The GraphLab Framework

Scheduler Consistency Model

Graph Based
Data Representation

Update Functions
User Computation

58



label_prop(i, scope){
// Get Neighborhood data
(Likes[i], Wij, Likes[j]) ßscope;

// Update the vertex data

// Reschedule Neighbors if needed
if Likes[i] changes then 
reschedule_neighbors_of(i); 
}

Likes[i]← Wij × Likes[ j]
j∈Friends[i]
∑ ;

Update Functions

59

An update function is a user defined program which when 
applied to a vertex transforms the data in the scopeof the vertex



The Graph-Parallel Abstraction

A user-defined Vertex-Program runs on each vertex
Graph constrains interaction along edges

Using messages  (e.g. Pregel [PODC’09, SIGMOD’10])

Through shared state (e.g., GraphLab [UAI’10, VLDB’12])

Parallelism: run multiple vertex programs simultaneously

60



PageRank Algorithm

Update ranks in parallel 
Iterate until convergence

Rank of 
user i Weighted sum of 

neighbors’ ranks

61

R[i] = 0.15 +
X

j2Nbrs(i)

wjiR[j]



The Pregel Abstraction

Vertex-Programs interact by sending messages.

iPregel_PageRank(i, messages) : 
// Receive all the messages
total = 0
foreach( msg in messages) :
total = total + msg

// Update the rank of this vertex
R[i] = 0.15 + total

// Send new messages to neighbors
foreach(j in out_neighbors[i]) :
Send  msg(R[i] * wij) to vertex j

62Malewicz et al. [PODC’09, SIGMOD’10]



The GraphLab Abstraction
Vertex-Programs directly read the neighbors state

iGraphLab_PageRank(i) 
// Compute sum over neighbors
total = 0
foreach( j in in_neighbors(i)): 
total = total + R[j] * wji

// Update the PageRank
R[i] = 0.15 + total 

// Trigger neighbors to run again
if R[i] not converged then
foreach( j in out_neighbors(i)): 
signal vertex-program on j

63Low et al. [UAI’10, VLDB’12]



The GraphLab Framework

Scheduler Consistency Model

Graph Based
Data Representation

Update Functions
User Computation
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The Scheduler

65

CPU 1

CPU 2

The scheduler determines the order that vertices are updated.
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The process repeats until the scheduler is empty.



Choosing a Schedule

GraphLab provides several different schedulers
Round Robin: vertices are updated in a fixed order
FIFO: Vertices are updated in the order they are added
Priority: Vertices are updated in priority order  

66

The choice of schedule affects the correctness and parallel 
performance of the algorithm

Obtain different algorithms by simply changing a flag!
--scheduler=roundrobin

--scheduler=fifo
--scheduler=priority



The GraphLab Framework

Scheduler Consistency Model

Graph Based
Data Representation

Update Functions
User Computation

67



Ensuring Race-Free Code
How much can computation overlap?



Need for Consistency?

No Consistency

Higher 
Throughput

(#updates/sec)

Potentially Slower 
Convergence of ML



Importance of Consistency
Many algorithms require strict consistency, or performs 
significantly better under strict consistency.
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Inconsistent Updates

Consistent Updates

Alternating Least Squares



Even Simple PageRank can be Dangerous 

GraphLab_pagerank(scope) {
ref sum = scope.center_value
sum = 0
forall (neighbor in scope.in_neighbors )

sum = sum + neighbor.value / nbr.num_out_edges
sum = ALPHA + (1-ALPHA) * sum
…



Inconsistent PageRank



Even Simple PageRank can be Dangerous 

GraphLab_pagerank(scope) {
ref sum = scope.center_value
sum = 0
forall (neighbor in scope.in_neighbors)

sum = sum + neighbor.value / nbr.num_out_edges
sum = ALPHA + (1-ALPHA) * sum
…

CPU 1 CPU 2Read

Read-write race è
CPU 1 reads bad PageRank 
estimate, 
as CPU 2 computes value



Race Condition Can Be Very Subtle
GraphLab_pagerank(scope) {

ref sum = scope.center_value
sum = 0
forall (neighbor in scope.in_neighbors)

sum = sum + neighbor.value / 
neighbor.num_out_edges

sum = ALPHA + (1-ALPHA) * sum
…

GraphLab_pagerank(scope) {
sum = 0
forall (neighbor in scope.in_neighbors)

sum = sum + neighbor.value / 
nbr.num_out_edges

sum = ALPHA + (1-ALPHA) * sum
scope.center_value = sum 
…

U
ns
ta
bl
e

St
ab
le

This was actually encountered in user code.



CPU 1 CPU 2

Common Problem: Write-Write Race

75

Processors running adjacent update functions simultaneously 
modify shared data:

CPU1 writes: CPU2 writes:

Final Value



GraphLab Supports Serializability

76

Serializability: For a group of concurrent (parallel) transactions, 
e.g. executing the update functions for different vertices, the 
results produced by these concurrent transactions are the same 
as if each transaction has taken place one after another (without 
interleaving) in some sequential order. 

CPU 1

CPU 2

Single
CPU

Parallel

Sequential

time



Importance of Consistency

Machine learning algorithms require “model debugging”

Build

Test

Debug

Tweak Model



Consistency Rules

78

Guarantee serializability for all update functions

Data



Full Consistency

79



Obtaining More Parallelism

80



Edge Consistency

81

CPU 1 CPU 2

Safe

Read



Consistency Through Scheduling
Edge Consistency Model:

Two vertices can be Updated simultaneously if they do not 
share an edge.

Graph Coloring:
Two vertices can be assigned the same color if they do not 
share an edge.
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Phase 3



Converged Slowly Converging
Focus Effort

Dynamic Computation

83



PageRank Update Function

GraphLab_pagerank(scope) {
double sum = 0;
forall ( nbr in scope.in_neighbors() )

sum = sum + neighbor.value() / 
nbr.num_out_edges();

double old_rank = scope.vertex_data();
scope.center_value() = ALPHA + (1-ALPHA) * sum; 

double residual = abs(scope.center_value() –
old_rank);

if (residual > EPSILON) 
reschedule_out_neighbors();

}

Directly Read
Neighbor Values

Dynamically Schedule
Computation



The GraphLab Framework

Scheduler Consistency Model

Graph Based
Data Representation

Update Functions
User Computation
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Algorithms Implemented in GraphLab (1.x) 
PageRank
K-Means++
Matrix Factorization
5-line codes for a real Recommendation Systems
Label-Propagation
Loopy Belief Propagation
Gibbs Sampling
CoEM
Graphical Model Parameter Learning
Probabilistic Matrix/Tensor Factorization
Alternating Least Squares
Lasso with Sparse Features
Support Vector Machines with Sparse Features

…



The Cost of Hadoop
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Joseph Gonzalez

Yucheng
Low

Danny
Bickson

Distributed Graph-Parallel Computation on Natural Graphs

Haijie
Gu

Joint work with:

Carlos
Guestrin
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Problem:
Existing distributed graph 

computation systems, including 
GraphLab v1.x, perform poorly 

on Natural Graphs.
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Natural Graphs
Graphs derived from natural 

phenomena



Properties of Natural Graphs
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Power-Law Degree Distribution
Reference: Zipf, Power-Laws and Pareto: A Ranking Tutorial, by L. Adamic,
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html



Power-Law Degree Distribution
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102

104

106

108

1010

degree

co
un
t

Top 1% of vertices are 
adjacent to

50% of the edges!

High-Degree 
Vertices
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AltaVista WebGraph
1.4B Vertices, 6.6B Edges

Degree

More than 108 vertices 
have one neighbor.



Power-Law Degree Distribution

93

“Star Like”Motif

President
Obama Followers
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Figure from: Newman, M. E. J. (2005) “Power laws, Pareto 
distributions and Zipf's law.” Contemporary Physics 46:323–351.

Power Laws are everywhere!



Properties of Natural Graphs
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High-degree 
Vertices

Low Quality
Partition

Power-Law 
Degree Distribution



Asynchronous Execution
requires heavy locking (GraphLab)

Challenges of High-Degree Vertices

Touches a large
fraction of graph

(GraphLab)

Sequentially process
edges

Sends many
messages
(Pregel)

Edge meta-data
too large for single

machine

Synchronous Execution
prone to stragglers (Pregel)

96



Communication Overhead 
for High-Degree Vertices

Fan-In vs. Fan-Out

97



Pregel Message Combiners on Fan-In

Machine 1 Machine 2

+B

A

C

D
Sum

• User defined commutative associative (+) 
message operation:

98



Pregel Struggles with Fan-Out

Machine 1 Machine 2

B

A

C

D

• Broadcast sends many copies of the same 
message to the same machine!

99



Fan-In and Fan-Out Performance

• PageRank on synthetic Power-Law Graphs
– Piccolo was used to simulate Pregel with combiners

More high-degree vertices 100

High Fan-Out Graphs
High Fan-In Graphs



GraphLab Ghosting

• Changes to master are synced to ghosts

Machine 1

A

B

C

Machine 2

DD

A

B

CGhost

101



GraphLab Ghosting

• Changes to neighbors of high degree vertices 
creates substantial network traffic

Machine 1

A

B

C

Machine 2

DD

A

B

C Ghost

102



Fan-In and Fan-Out Performance

• PageRank on synthetic Power-Law Graphs
• GraphLab is undirected

More high-degree vertices 103

Pregel Fan-Out

Pregel Fan-In

GraphLab Fan-In/Out



Graph Partitioning

• Graph parallel abstractions rely on partitioning:
– Minimize communication
– Balance computation and storage

Y

Machine 1 Machine 2
104

Data transmitted
across network

O(# cut edges)



Power-Law Graphs are 
Difficult to Partition

• Power-Law graphs do not have low-cost balanced 
cuts [Leskovec et al. 08, Lang 04]

• Traditional graph-partitioning algorithms perform 
poorly on Power-Law Graphs.
[Abou-Rjeili et al. 06]

105

CPU 1 CPU 2



Machine 1 Machine 2

Random Partitioning

• Both GraphLab and Pregel resort to random
(hashed) partitioning on natural graphs

3"
2"

1"

D

A"

C"

B" 2"
3"

C"

D

B"
A"

1"

D

A"

C"C"

B"

(a) Edge-Cut

B"A" 1"

C" D3"

C" B"2"

C" D

B"A" 1"

3"

(b) Vertex-Cut

Figure 4: (a) An edge-cut and (b) vertex-cut of a graph into
three parts. Shaded vertices are ghosts and mirrors respectively.

5 Distributed Graph Placement

The PowerGraph abstraction relies on the distributed data-
graph to store the computation state and encode the in-
teraction between vertex programs. The placement of
the data-graph structure and data plays a central role in
minimizing communication and ensuring work balance.

A common approach to placing a graph on a cluster of p
machines is to construct a balanced p-way edge-cut (e.g.,
Fig. 4a) in which vertices are evenly assigned to machines
and the number of edges spanning machines is minimized.
Unfortunately, the tools [21, 31] for constructing balanced
edge-cuts perform poorly [1, 26, 23] or even fail on power-
law graphs. When the graph is difficult to partition, both
GraphLab and Pregel resort to hashed (random) vertex
placement. While fast and easy to implement, hashed
vertex placement cuts most of the edges:

Theorem 5.1. If vertices are randomly assigned to p
machines then the expected fraction of edges cut is:

E

|Edges Cut|

|E|

�
= 1� 1

p
(5.1)

For example if just two machines are used, half of the
of edges will be cut requiring order |E|/2 communication.

5.1 Balanced p-way Vertex-Cut

The PowerGraph abstraction enables a single vertex pro-
gram to span multiple machines. Hence, we can ensure
work balance by evenly assigning edges to machines.
Communication is minimized by limiting the number of
machines a single vertex spans. A balanced p-way vertex-

cut formalizes this objective by assigning each edge e2 E
to a machine A(e) 2 {1, . . . , p}. Each vertex then spans
the set of machines A(v)✓ {1, . . . , p} that contain its ad-
jacent edges. We define the balanced vertex-cut objective:

min
A

1
|V | Â

v2V
|A(v)| (5.2)

s.t. max
m

|{e 2 E | A(e) = m}|< l |E|
p

(5.3)

where the imbalance factor l � 1 is a small constant. We
use the term replicas of a vertex v to denote the |A(v)|
copies of the vertex v: each machine in A(v) has a replica
of v. The objective term (Eq. 5.2) therefore minimizes the

average number of replicas in the graph and as a conse-
quence the total storage and communication requirements
of the PowerGraph engine.

Vertex-cuts address many of the major issues associated
with edge-cuts in power-law graphs. Percolation theory
[3] suggests that power-law graphs have good vertex-cuts.
Intuitively, by cutting a small fraction of the very high
degree vertices we can quickly shatter a graph. Further-
more, because the balance constraint (Eq. 5.3) ensures
that edges are uniformly distributed over machines, we
naturally achieve improved work balance even in the pres-
ence of very high-degree vertices.

The simplest method to construct a vertex cut is to
randomly assign edges to machines. Random (hashed)
edge placement is fully data-parallel, achieves nearly per-
fect balance on large graphs, and can be applied in the
streaming setting. In the following we relate the expected
normalized replication factor (Eq. 5.2) to the number of
machines and the power-law constant a .

Theorem 5.2 (Randomized Vertex Cuts). Let D[v] denote
the degree of vertex v. A uniform random edge placement
on p machines has an expected replication factor

E
"

1
|V | Â

v2V
|A(v)|

#
=

p
|V | Â

v2V

 
1�
✓

1� 1
p

◆D[v]
!
. (5.4)

For a graph with power-law constant a we obtain:

E
"

1
|V | Â

v2V
|A(v)|

#
= p� pLia

✓
p�1

p

◆
/z (a) (5.5)

where Lia (x) is the transcendental polylog function and
z (a) is the Riemann Zeta function (plotted in Fig. 5a).

Higher a values imply a lower replication factor, con-
firming our earlier intuition. In contrast to a random 2-
way edge-cut which requires order |E|/2 communication
a random 2-way vertex-cut on an a = 2 power-law graph
requires only order 0.3 |V | communication, a substantial
savings on natural graphs where E can be an order of
magnitude larger than V (see Tab. 1a).

5.2 Greedy Vertex-Cuts

We can improve upon the randomly constructed vertex-
cut by de-randomizing the edge-placement process. The
resulting algorithm is a sequential greedy heuristic which
places the next edge on the machine that minimizes the
conditional expected replication factor. To construct the
de-randomization we consider the task of placing the i+1
edge after having placed the previous i edges. Using the
conditional expectation we define the objective:

argmin
k

E
"

Â
v2V

|A(v)|

����� Ai,A(ei+1) = k

#
(5.6)

6

10 Machines à 90% of edges cut
100 Machines à 99% of edges cut!

106



• GAS Decomposition: distribute vertex-programs 
– Move computation to data
– Parallelize high-degree vertices

• Vertex Partitioning:
– Effectively distribute large power-law graphs

107



Machine 1 Machine 2

• Split High-Degree vertices
• New Abstraction à Equivalence on Split Vertices

108

Program
For This

Run on This



Minimizing Communication in PowerGraph

YYY

A vertex-cut minimizes 
machines each vertex spans

Percolation theory suggests that power law graphs 
have good vertex cuts. [Albert et al. 2000]

Communication is linear in 
the number of machines 

each vertex spans
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New Approach to Partitioning

• Rather than cut edges:

• we cut vertices:
CPU 1 CPU 2

Y
Y Must synchronize 

many edges

CPU 1 CPU 2

Y Y Must synchronize 
a single vertex

New Theorem:
For any edge-cut we can directly 
construct a vertex-cut which requires 
strictly less communication and storage.
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Gather Information
About Neighborhood

Update Vertex

Signal Neighbors &
Modify Edge Data

A Common Pattern for
Vertex-Programs

GraphLab_PageRank(i) 
// Compute sum over neighbors
total = 0
foreach( j in in_neighbors(i)): 
total = total + R[j] * wji

// Update the PageRank
R[i] = 0.1 + total 

// Trigger neighbors to run again
if R[i] not converged then
foreach( j in out_neighbors(i)) 
signal vertex-program on j
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GAS Decomposition
Y

+ … +      à

Y

Parallel
Sum

User Defined:
Gather(             ) à ΣY

Σ1 + Σ2 à Σ3

Y

Gather (Reduce)
Apply the accumulated 
value to center vertex

Apply
Update adjacent edges

and vertices.

Scatter

⌃

Accumulate information 
about neighborhood

Y

+ 

User Defined:
Apply(       , Σ) à Y

’
Y

Y

Σ Y
’

Update Edge Data &
Activate Neighbors

User Defined:
Scatter(           ) àY’

Y
’
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Machine 2Machine 1

Machine 4Machine 3

Distributed Execution of a PowerGraph 
Vertex-Program

Σ1 Σ2

Σ3 Σ4

+            +            +  

YYYY

Y
’

Σ

Y
’
Y
’

Y
’Gather

Apply

Scatter
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Master

Mirror

Mirror
Mirror



PowerGraph_PageRank(i)

Gather( j à i ) : return  wji * R[j]
sum(a, b) :  return a + b;

Apply(i, Σ) : R[i] = 0.15 + Σ 

Scatter( i à j ) :
if R[i] changed then trigger j to be recomputed

PageRank in PowerGraph
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R[i] = 0.15 +
X

j2Nbrs(i)

wjiR[j]



Constructing Vertex-Cuts

• Evenly assign edges to machines
– Minimize machines spanned by each vertex

• Assign each edge as it is loaded
– Touch each edge only once

• Propose three distributed approaches:
– Random Edge Placement
– Coordinated Greedy Edge Placement
– Oblivious Greedy Edge Placement
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Machine 2Machine 1 Machine 3

Random Edge-Placement
• Randomly assign edges to machines

YYYY ZYYYY ZY ZY Spans 3 Machines

Z Spans 2 Machines

Balanced Vertex-Cut

Not cut!
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Analysis Random Edge-Placement

• Expected number of machines spanned by a 
vertex:

Twitter Follower Graph
41 Million Vertices
1.4 Billion Edges

Accurately Estimate 
Memory and Comm. 

Overhead
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Random Vertex-Cuts vs. Edge-Cuts 

• Expected improvement from vertex-cuts:

118

Order of Magnitude
Improvement



Greedy Vertex-Cuts

• Place edges on machines which already have 
the vertices in that edge.

Machine1 Machine 2

BA CB

DA EB
119



Greedy Vertex-Cuts

• De-randomization à greedily minimizes the 
expected number of machines spanned

• Coordinated Edge Placement
– Requires coordination to place each edge
– Slower: higher quality cuts

• Oblivious Edge Placement
– Approx. greedy objective without coordination
– Faster: lower quality cuts
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Partitioning Performance
Twitter Graph: 41M vertices, 1.4B edges

Oblivious balances cost and partitioning time.

Random
Oblivious

Coordinated
Coordinated

Oblivious
Random
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Cost Construction Time
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Greedy Vertex-Cuts Improve Performance

Greedy partitioning improves 
computation performance. 122



PowerGraph System Design

• Implemented as C++ API
• Uses HDFS for Graph Input and Output
• Fault-tolerance is achieved by check-pointing 

– Snapshot time < 5 seconds for twitter network
123

EC2 HPC Nodes

MPI/TCP-IP PThreads HDFS

PowerGraph (GraphLab2) System



Implemented Many Algorithms

• Collaborative Filtering
– Alternating Least Squares
– Stochastic Gradient 

Descent
– SVD
– Non-negative MF

• Statistical Inference
– Loopy Belief Propagation
– Max-Product Linear 

Programs
– Gibbs Sampling

• Graph Analytics
– PageRank
– Triangle Counting
– Shortest Path
– Graph Coloring
– K-core Decomposition

• Computer Vision
– Image stitching

• Language Modeling
– LDA
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Comparison with GraphLab & Pregel
• PageRank on Synthetic Power-Law Graphs:

RuntimeCommunication

Pregel (Piccolo)

GraphLab

Pregel (Piccolo)

GraphLab
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High-degree vertices High-degree vertices

PowerGraph is robust to high-degree vertices.



PageRank on Twitter Follower Graph
Natural Graph with 40M Users,  1.4 Billion Links

Hadoop results from [Kang et al. '11]
Twister (in-memory MapReduce) [Ekanayake et al. ‘10]
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Order of magnitude by 
exploiting properties 

of Natural Graphs



PageRank on the Twitter Follower Graph
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Communication Runtime
Natural Graph with 40M Users,  1.4 Billion Links

Reduces Communication Runs Faster
32 Nodes x 8 Cores (EC2 HPC cc1.4x)



PowerGraph is Scalable
Yahoo Altavista Web Graph (2002):

One of the largest publicly available web graphs
1.4 Billion Webpages,  6.6 Billion Links

1024 Cores (2048 HT)
64 HPC Nodes

7 Seconds per Iter.
1B links processed per second

30 lines of user code
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Topic Modeling
• English language Wikipedia 

– 2.6M Documents, 8.3M Words, 500M Tokens

– Computationally intensive algorithm

129

100 Yahoo! Machines
Specifically engineered for this task

64 cc2.8xlarge EC2 Nodes
200 lines of code & 4 human hours



Counted: 34.8 Billion Triangles

130

Triangle Counting on The Twitter Graph
Identify individuals with strong communities.

64 Machines
1.5 Minutes

1536 Machines
423 Minutes

Hadoop
[WWW’11]

S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last reducer,”WWW’11

282 x Faster

Why? Wrong Abstraction  à
Broadcast O(degree2) messages per Vertex



Summary
• Problem: Computation on Natural Graphs is

challenging
– High-degree vertices
– Low-quality edge-cuts

• Solution: PowerGraph System
– GAS Decomposition: split vertex programs
– Vertex-partitioning: distribute natural graphs

• PowerGraph theoretically and experimentally
outperforms existing graph-parallel systems.
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PowerGraph (GraphLab2) System

Graph 
Analytics

Graphical
Models

Computer
Vision Clustering Topic

Modeling
Collaborative

Filtering

Machine Learning and Data-Mining 
Toolkits



is GraphLab Version 2.1

Apache 2 License



Graph 134

GraphLab for Big Learning (MLDM) Applications



Graph 135

Summary: Different Versions of GraphLab

¢ GraphLab 1.0 (phased out):
l Designed to run on closely-coupled, shared-memory multicore machine, 

performed poorly with PowerLaw Graphs.
¢ GraphChi: Doing BigData with Small Machine:

l enables a Single PC to process graphs with billions of edges
¢ GraphLab (Ver2.x) or so-called the PowerGraph

l Model targets for seriously-imbalanced node degrees found in practical 
(Natural) graphs and support parallel processing on Share-Nothing Cluster 
architecture

l Taking the split-vertex instead split-edge approach
¢ GraphCreate (Product of a Startup, Turi.com, founded by GraphLab team) 

l allows you to code in your PC using Python but deploy to run over Cloud-
based shared-nothing clusters ; Turi was acquired by Apple in 2016.



Graph 136Source: Wikipedia (Japanese rock garden)

Questions?


